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Abstract--The geometry of sampling domains is a first-order consideration in the characterization of brittle fault 
populations. In most cases, descriptions of fault size distributions based on map, cross-section, traverse or 
borebole data systematically underestimate the number of small faults present in a volume. The geometry of 
sampling domains may he accounted for using an empirical proportionality between fault displacement and trace 
length. Estimates of strain in which the sampling geometry is considered suggest that small faults accommodate a 
significant portion of the total strain due to the brittle faulting process. 

INTRODUCTION 

A PROBLEM common to many studies of brittle fault 
populations is the quantification of sampling. A descrip- 
tion of sampling is important to understand the re- 
liability of both qualitative and quantitative analyses 
based on the data. We recently proposed a means of 
quantitatively assessing the sampling of brittle fault 
populations based on the conjecture that faults follow 
fractal (power-law) size distributions (Marrett & All- 
mendinger 1990). This approach is useful because only 
two parameters need be evaluated to construct a model 
with which to compare the data and quantify the portion 
of faults sampled in any size range. A valuable by- 
product of such a model is an estimate of the total strain 
due to faulting. 

Since submission of the above cited work, we have 
become aware of data supporting fractal size distri- 
butions for brittle fault populations and analyses similar 
to our own for estimating the strain accommodated by a 
brittle fault population (Kakimi 1980, Villemin & Sun- 
woo 1987, Childs et al. 1990, Scholz & Cowie 1990). 
Here, we address two problems concerning these esti- 
mates. There is disagreement among various authors 
concerning the specific relationship between fault dis- 
placement and fault trace length or width (e.g. Walsh & 
Watterson 1988, Scholz & Cowie 1990), which is necess- 
ary to make strain estimates. A second problem con- 
cerns the geometry of the sampling domain in which a 
fault population is observed. Although the geometry of 
the sampling domain is of first-order importance for 
estimating strain, previous analyses have not taken this 
into account. 

The geometrical dimensions (s) of the sampling con- 
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figuration employed to study a brittle fault population 
commonly is lower than the geometrical dimension ( f )  
of the region occupied by the fault population. Popu- 
lations of faults that do not span the brittle layer of the 
Earth's crust occupy three-dimensional volumes ( f  = 3), 
but maps and cross-sections provide two-dimensional 
sampling (s = 2), and traverse and borehole data pro- 
vide one-dimensional sampling (s = 1). Faults spanning 
the brittle crust occupy effectively two-dimensional 
shells ( f  = 2). Maps should provide complete two- 
dimensional sampling (s -- 2), but cross-sections and 
traverse data provide equivalent one-dimensional sam- 
pling (s = 1), and borehole data provide zero- 
dimensional sampling (s = 0). 

A sampling configuration with a geometrical dimen- 
sion that is less than that of the region occupied by a fault 
population (s < f )  results in underestimation of the 
number of small faults present in a region and, hence, of 
the contribution by small faults to the total strain accom- 
modated by faulting. The reason for this is that a specific 
large fault is more likely than a specific small fault to be 
intersected by an arbitrary line or plane through the 
volume containing the fault population (e.g. Heifer & 
Bevan 1990). Thus, even if all faults are observed along a 
one- or two-dimensional sample of a three-dimensional 
fault population, the sampling of large faults will be 
more complete than the sampling of small faults. We 
consider this effect explicitly and show how to account 
for it in estimates of the total strain due to the entire fault 
population. 

THEORETICAL BACKGROUND 

The strain of a fault is directly related to the geometric 
moment (Mg) which may be_expressed as the product of 
the average displacement (d) and surface area (A): 
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M~ = d .A.  (1) 

Statistically, the average displacement is directly pro- 
portional to the maximum displacement or an arbitrary 
displacement measurement (d) (Marrett & Allmend- 
inger 1990). Because three-dimensional control is rarely 
sufficient to evaluate the surface area of a fault, the trace 
length (l) on maps or cross-sections provides the most 
convenient measure of surface area. For faults that do 
and do not span the brittle crust, respectively: 

Mg ~ d" l (2a) 

Mg ~ d. 12. (2b) 

If fault populations follow fractal size distributions in 
terms of strain, then we expect that the cumulative 
number of faults (EN) with geometric moment greater 
than or equal to Ma can be represented by: 

EN ~ M i  B, (3) 

where B characterizes the relative numbers of large and 
small faults (Marrett & Allmendinger 1990). If we 
further assume that d and l are systematically related, 
then we can write the following equations: 

Z N  - d - c ,  (4) 

d - ( 5 )  

Substitution of equations (2), (4) and (5) into equation 
(3) reveals for faults that do and do not span the brittle 
crust, respectively: 

B - CI" C2 (6a) 
C2+ 1 

B - C1" C2 (6b) 
C2 + 2  

Fault populations commonly are observed using sam- 
piing configurations having a lower geometrical dimen- 
sion than that of the region occupied by the fault popu- 
lation. In the case of faults that do not span the brittle 
layer of the Earth's crust ( f  = 3), the probability of 
observing a specific fault in an arbitrary two-dimensional 
cross-section (s = 2) of the fault population depends 
directly on l. The same holds in all cases for which 
f - s = 1. The cumulative number of faults can thus be 
written: 

E N '  ~ E N . I  ~ d - c , + l / G  ~ d - c ' ,  (7) 

where the primed variables are those of the lower- 
dimensional sample. It follows that: 

1 
C 1 = C i + - - '  ( 8 )  

C2 

Similarly, the probability of observing a specific fault in a 
one-dimensional traverse (s = 1) across a population of 
faults that do not span the brittle crust ( f  = 3) depends 
on l z. The same holds in all cases for which f -  s = 2: 

E N "  ~ E N . I  2 ~ d -C,+21C2 ~ d -C' ' ,  (9) 

where the double primed variables are those of the 
sample. It follows tha~: 

? 
. _(7( + --~. (10) 

(7. 

We wish to estimate the strain accommodated by a 
population of faults using information explicitly describ- 
ing only the largest faults. For a fault population with an 
ideally fractal size distribution, the geometric moment 
of the Nth largest fault (M~ N)) can be expressed in terms 
of the geometric moment of the largest fault (M~ 1)) and 
B: 

M(,,;~ = M~I)" 1 ~-i7~" (1 l) 

(total) The total geometric moment (Mg ) due to the com- 
bined effects of the Nlargest faults can then be written as 
follows (Marrett  & Allmendinger 1990): 

1 i ...gM (t° tal)  = M(~ i). + + ~ + . . '  + ~ • (12) 

M(tOtal) converges only for B < 1 in which case the 
largest faults accommodate most of the strain. For B > 
1, small faults accommodate more strain than large 
faults, so the size of the smallest fault must be known to 
make a useful strain estimate. 

Scholz & Cowie (1990) integrated an expression simi- 
lar to equation (11) for N from 1 to infinity, and obtained 
(simplifying their result using the present notation): 

_ -" B ( 1 3 )  g l -  

By numerically evaluating equation (12), we find that 
equation (13) underestimates M(t°tal) The reason for 
this is that the integral approach implicitly assumes N to 
be a continuous function, but Nis defined to be integers. 
Stable estimates of M (t°tal) may be made by combining g 
the summation and integral approaches using: 

M(tOtal) = M(gl).j t l 1 
g ~ + ~ + . . ,  + N1/-'--- ~ 

t 

B ( N +  1) 1. 
*~ (1 - B)(N  + 1)I/BJ (14)  

For most values of B <- 1, equation (14) converges 
rapidly as N is increased. 

FAULT POPULATIONS 

The hypothesis that fault populations follow fractal 
size distributions is supported by analysis of several data 
sets (e.g. Kakimi 1980, Villemin & Sunwoo 1987, Childs 
et  al .  1990). These data have been used to make esti- 
mates of the total strain or extension accommodated by 
faulting (respectively by Kakimi 1980, Scholz & Cowie 
1990); however the geometries of the sampling domains 
were not taken into consideration. Accounting for the 
sampling geometry may yield estimates of the net strain 



Strain from sampling fault populations 737 

-2 

-4 

o Menard (1962) N = 15 

• MacMillan ( 1 9 7 5 ) N .  136 

= Gull o! MexicO N = 242 
• MFRG (1973) N = 130 

Krantz (1988) N = 39 

, t  ! A  
, t  o . , . , Z p . "  . 
& ~ ,  • &A 

~ul ,& AIA =,& 

"j." . 

i ~ =  = o  
l l t ,  o 
e l m  

log d = - 2.05 + 1.46 log I 

R 2 = 0.904 

-2 -1 0 1 2 3 4 

log I { k i n }  

Fig. 1. Displacement-trace length data.  The  line represents a least- 
squares fit to all 562 data (R 2 is correlat ion coefficient). 

due to faulting that are significantly greater than esti- 
mates that fail to account for the sampling geometry. We 
illustrate this using results from Childs et al. (1990) and 
an empirically based proportionality between fault dis- 
placement and trace length. 

Displacement-trace length proportionality 

The parameter C2 (equation 5) was addressed by 
Walsh & Watterson (1988), who proposed a model for 
fault growth which predicts C 2 --- 2. However, the 
least-squares best-fit to the data they analyzed was C2 = 
1.58. We compiled other data (Menard 1962, MacMillan 
1975, MFRG 1973, Krantz 1988, Gulf of Mexico unpub- 
lished), none of which were used by Walsh & Watterson 
(1988), and find empirically that C 2 = 1.46 (Fig. 1). The 
fit to the data is quite good, considering that displace- 
ment varies over six orders of magnitude and trace 
length varies by nearly five orders of magnitude. How- 
ever, the scatter also is quite large. For example, faults 
with 10 m of displacement have traces as short as 0.37 km 
and as long as 7.3 km (Fig. 1). 

Both data sets presented here and in Walsh & Watter- 
son (1988) suggest a value of C2 near 1.5. Although this 
result disagrees with the fault growth model of Walsh & 
Watterson (1988), C2 = 1.5 may be anticipated by 
making a slight modification to their model. In their 
model, the difference between slips during consecutive 
events on a fault is a constant, which results in C2 = 2. If, 
instead, the difference between slips depends linearly on 
the total number of slip events that have occurred on the 
fault, C2 = 1.5 results. 

Scholz & Cowie (1990) also considered the parameter 

C2 and argued that a value of about 1.0 is most consistent 
with data. However, with the exception of faults in 
Quaternary lacustrine strata, the data shown by Scholz 
& Cowie (1990) follow the same pattern as data pre- 
sented here and in Walsh & Watterson (1988). Because 
the lacustrine strata are young and surficial, they prob- 
ably are weaker than most brittle rocks (Walsh & Wat- 
terson 1988). This may explain why faults in the lacus- 
trine strata have higher displacements than predicted by 
the fit to the data presented here (Fig. 1). The interpre- 
tation of Scholz & Cowie (1990) suggests, on the other 
hand, that the lacustrine strata are among the strongest 
materials containing faults they analyzed. 

Size distributions of  fault displacements 

Reported values of C 1 (equation 4) represent faults 
that do not span the brittle crust and vary widely from 
0.37 to 1.7 (Kakimi 1980, Villemin & Sunwoo 1987, 
Childs et al. 1990). We argue that a large part of the 
variation is an artifact resulting from different geom- 
etries of the sampling domains. Unfortunately, the sam- 
piing procedure is seldom described in studies of fault 
populations (e.g. Kakimi 1980, Villemin & Sunwoo 
1987). Childs et al. (1990) present a number of displace- 
ment population analyses and carefully distinguish one- 
and two-dimensionally sampled data sets. 

The values determined by Childs et al. (1990) for CI 
(1.0-1.7) are systematically higher than those deter- 
mined for C~ (0.37-1.0). Furthermore, assuming C2 = 
1.5, note that the range of CI predicts the range of C~ 
(equations 8 and 10). Thus, the data are consistent with 
the proposed dependence of displacement population 
fractal dimension on sampling domain geometry, and 
the variation of the fractal dimension is much les than 
previously thought. 

For the purpose of illustrating the importance of 
accounting for the geometry of the sampling domain of 
fault populations, we wish to determine a value for C 1. 
Most analyses of C'~ are near 0.50 (Childs et al. 1990). 
Assuming C2 = 1.5, we estimate C1 = 1.8 (equation 10). 

Estimation of  total strain accommodated by faulting 

Because strain depends directly on Mg, an estimate of 
the total strain accommodated by a fault population with 
an ideally fractal size distribution may be made knowing 
M(g x) and B. In practice, a much more reliable estimate 
of total strain may be made by summing the moments of 
the largest faults studied and using the relationships 
presented here to account for smaller faults. Assuming 
the values determined above of Ct = 1.8 and C2 = 1.5, 
we may calculate B = 0.77 (equation 6) and Aft(t°tal) = -,=g 

4.0 M(g a) (equation 14). If the sampling geometry had not 
been accounted for and C1 = C~ = 0.50 were assumed, 
we would calculate instead B = 0.21 and M (t°tal) = 1.04 
M ( 1 ) .  

In both cases M(g 1) is the same, so the strain estimates 
differ by a factor of about 4. By assuming larger values 
for C~ in the calculations of the previous two para- 
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graphs, strain estimates will differ by even greater fac- 
tors. The differences between strain estimates that do 
and do not account for the geometry of the sampling 
domain reflect the importance of small faults in accom- 
modating strain. Thus, accounting for the geometry of 
the sampling domain is of first-order importance for 
estimating strain from fault data. 
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